Solution to 1992 Problem 39

The coefficient C_n of \sin (n \omega t) in the Fourier expansion of V(t) is
\begin{align*}\frac{\omega}{\pi}\int_0^{2 \pi/\omega} \sin\left(n \omega t\right) V(t) &= \frac{\omega}{\pi}\int_0^{ \pi/...
When n is even C_n = 0 and when n is odd C_n equals
\begin{align*}C_n = \frac{4 }{n \pi }\end{align*}
The coefficients D_n of \cos (n \omega t) are
\begin{align*}\frac{\omega}{\pi}\int_0^{2 \pi/\omega} \cos\left(n \omega t\right) V(t) &= \frac{\omega}{\pi}\int_0^{ \pi/...
Therefore, the coefficients of \cos (n \omega t) are all zero.
Therefore, answer (B) is correct.

return to the 1992 problem list

return to homepage

Please send questions or comments to where X = physgre.